HEPATIC ENCEPHALOPATHY: CLINICAL AND LABORATORY ADVANCES

Roger F. Butterworth
Neuroscience Research Unit,
Hospital St-Luc (CHUM), University of Montreal, Montreal, (Quebec) Canada
Hepatic Encephalopathy in Chronic Liver Disease

- Neuropsychiatric Syndrome
- Personality changes, sleep disorders
- Attention deficit, motor incoordination
- Asterixis
- Stupor
- Coma
Hepatic Encephalopathy in Chronic Liver Disease

- Impact on quality of life
- Precipitating factors
 - Protein load
 - Gastrointestinal bleed
 - Sedatives
 - Hypoglycemia
 - Infection
Hepatic Encephalopathy Post-TIPS

- New or worsening encephalopathy in ~50% of cases
- Predictors
 - Prior encephalopathy
 - Non-alcoholic etiology
 - Hypoalbuminemia
 - Patient age
Recent Progress in the Pathophysiology of Hepatic Encephalopathy

1. Neuropathology
2. Neuroimaging
 - Positron Emission Tomography (PET)
 - Magnetic Resonance Imaging (MRI)
3. Spectroscopy
4. Molecular Biology
5. Implications for New Therapeutic Strategies
 - GABA modulation (neurosteroids)
Images of the Brain in Liver Failure

1. Neuropathology

2. Neuroimaging
 - Positron Emission Tomography (PET)
 - Magnetic Resonance Imaging (MRI)

3. Spectroscopy

4. Molecular Biology

5. Implications for New Therapeutic Strategies
 - GABA modulation (neurosteroids)
Neuroimaging in Liver Failure

- POSITRON EMISSION TOMOGRAPHY (PET)
 - 18F-DEOXYGLUCOSE
 - 13N-NH$_3$
Local Cerebral Glucose Utilization (LCGU) using 18F-Deoxyglucose (PET)
Correlation Between Decreased LCGU and Impaired Psychometric Test Performance in Cirrhotic Patients with Mild HE

Anterior cingulate cortex
Neuroimaging in Liver Failure

- POSITRON EMISSION TOMOGRAPHY (PET)
 - 18F-DEOXYGLUCOSE
 - 13N-NH$_3$
PET Images of Brain using 13NH$_3$ in a Patient With Mild HE

[Normal Patient]

[CBF, CMRA, PS Images]

[JCBFM, 11: 337-341, 1991]
PET Imaging Studies: Data

<table>
<thead>
<tr>
<th></th>
<th>Controls (5)</th>
<th>Patients (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial NH(_3) (mM)</td>
<td>0.03±0.007</td>
<td>0.062±0.02*</td>
</tr>
<tr>
<td>CMR/NH(_3)</td>
<td>0.35±0.15</td>
<td>0.91±0.36*</td>
</tr>
<tr>
<td>BBB transfer (NH(_3)) (ml/g/min)</td>
<td>0.13±0.03</td>
<td>0.22±0.07*</td>
</tr>
</tbody>
</table>

*p<0.01

JCBFM, 11: 337-341, 1991
Neuroimaging in Liver Failure

- POSITRON EMISSION TOMOGRAPHY (PET)
 - ^{18}F-DEOXYGLUCOSE
 - ^{13}N-NH$_3$
- MAGNETIC RESONANCE IMAGING (MRI)
Magnetic Resonance Imaging in Chronic Liver Failure

Note: Bilateral T_1-weighted signal hyperintensities in globus pallidus of patient (P) compared to control (C)
Manganese

- 98% cleared by liver, excreted in the bile
- Accumulates in globus pallidus following chronic intoxication
- Causes Alzheimer type II astrocytosis
Selective Increase of Brain Manganese in Globus Pallidus of HE Patients
Toxins Normally Removed by Hepatobiliary System Which Accumulate in Brain in Chronic Liver Failure

- Ammonia
- Manganese
Ammonia removal by brain

. No urea cycle

. Glutamine synthetase major system involved

Glutamate → Glutamine

\[\text{NH}_3 \quad \text{ATP} \quad \text{GS} \]

. GS uniquely ASTROCYTIC
IMAGES OF THE BRAIN IN LIVER FAILURE

1. Neuropathology
2. Neuroimaging
 - Positron Emission Tomography (PET)
 - Magnetic Resonance Imaging (MRI)
3. Spectroscopy
4. Molecular Biology
5. Implications for New Therapeutic Strategies
 - GABA modulation (neurosteroids)
 - Hypothermia
Increased brain glutamine correlates with severity of encephalopathy in chronic liver failure: results of 1H-MRS studies

Images of the Brain in Liver Failure

1. Neuropathology
2. Neuroimaging
 - Positron Emission Tomography (PET)
 - Magnetic Resonance Imaging (MRI)
3. Spectroscopy
4. Molecular Biology
5. Implications for New Therapeutic Strategies
 - GABA modulation (neurosteroids)
Altered Transcripts following Portacaval Anastomosis in Rat Cerebral Cortex

[J Neurosci Res 68(6), 2002]
Chronic Liver Failure Results in Increased Gene Expression in Brain

- Peripheral-type benzodiazepine receptor (PTBR)
- Nitric oxide synthase (nNOS isoform)
- Monoamine oxidase (MAO-A isoform)
Allopregnanolone is a Potent Inhibitory Neurosteroid with GABA-Agonist Properties
Increased Brain Concentrations of Allopregnanolone in Patients With HE
Treatment of Hepatic Encephalopathy in Chronic Liver Disease

1. Treatment of precipitating factor
2. No protein restriction (maintain 1-2g/kg/day)
3. Ammonia-lowering strategies
 - Aimed at residual liver (L-ornithine L-aspartate)
 - Aimed at the gut (Lactulose, antibiotics)
 - Aimed at the muscle (L-ornithine L-aspartate)
 - Aimed at the brain (none yet)
Treatment of Hepatic Encephalopathy in Chronic Liver Disease

4. Neuropharmacology

- Benzodiazepine Receptor Antagonists (Flumazenil) effective in Bz-induced encephalopathy, otherwise only in small sub-group

- Dopamine agonists (L-DOPA, Bromociptine). No clear effects in controlled clinical trials; may improve motor dysfunction.

- Use of opioid receptor antagonists, serotonin reuptake inhibitors, non-sedative antihistaminics suggested from animal studies but no translational research in this area.
Pathogenesis of Hepatic Encephalopathy: Take Home Message

- Neuropsychiatric Disorder
- High Impact on Quality of Life
- Precipitating Factor in >80% of cases
- Occurs in ~50% of TIPS cases
- Results from altered function of brain ASTROCYTES
- Brain regional selectivity (anterior cingulate cortex)
- Neurotoxins
 - Ammonia (throughout brain)
 - Manganese (globus pallidus)
- Altered expression of GENES coding for key brain proteins
Treatment of Hepatic Encephalopathy: Take Home Message

- Treat precipitating Factor
- Maintain protein at 1-2 g/kg/day
- Lower circulating ammonia
 - Lactulose, antibiotics (gut)
 - L-ornithine L-aspartate (muscle, liver)
- Neuropharmacology
 - Flumazenil (if Bz precipitation component of encephalopathy)
 - Limited translational research in this area
AGRACEDIMENTOS

Neuroscience Research Unit (Université de Montréal - Hôpital Saint-Luc)
- Jean-François Giguère, M.D., Ph.D.
- Joël Lavoie, Ph.D.
- Marcelle Bergeron, Ph.D.
- Robert Audet, Ph.D.
- Paul Desjardins, Ph.D.
- Maryse Héroux, Ph.D.
- V.L. Raghavendra Rao, Ph.D.
- Adrianna Michalak, M.D., Ph.D.
- Mireille Bélanger, M.Sc.
- Javier Vaquero, M.D.
- Alan Hazell, Ph.D.
- Dorothy Leong, Ph.D.
- Kathryn Todd, Ph.D.
- Guylaine Girard, M.D., M.Sc.
- Chris Rose, Ph.D.
- Pierre Pannunzio, M.Sc.
- Helen Chan, Ph.D.
- Darren Navarro, B.Sc.
- Samir Aboucha, Ph.D.
- Milarca Kruse-Whatley, B.Sc
- Hong Qu, Ph.D.
- Rama Rao, Ph.D.
- Jean-Pascal de Waele, Ph.D.
- Margie Swain, Ph.D.
- Hélène Fournier, M.Sc.
- Guy Therrien, M.D., Ph.D.
- L. Ratnakumari, Ph.D.
- Claudia Zwingmann, Ph.D.
- Violina Lozeva, M.D., Ph.D.
- Nicolas Chatauret, M.Sc.
- Marc Pannunzio, B.Sc.

Liver Unit (Université de Montréal)
- Gilles Pomier Layrargues, M.D
- P.-Michel Huet, M.D., Ph.D.

Northwestern University, Chicago
- Andy Blei, M.D.

University of Sydney, Australia
- Clive Harper, M.D.
- Jillian Kril, Ph.D.

University of Queensland, Australia
- Peter R. Dodd

Instituto Investigaciones Citologicas, FVIB
- Valencia, Spain
- Vicente Felipo, Ph.D.